
Software Design
Andreas Zeller 

Saarland University

with slides from Gregor Snelting, KIT

Object-Oriented Design

The challenge: how to choose the components
of a system with regard to

• similarities

• later changes.

This is the purpose of object-oriented design.

What's an Object?

An object offers

• a collection of services (methods) that work on

• a common state.

There is usually a correspondence between

• objects and nouns in the task  
("Bug", "Field", "Marker")

• methods and verbs in the task  
("move", "sit down", "delete")

Object-Oriented Modeling in UML

includes the following design aspects:

• Object model: Which objects do we need?

• Which are the features of these objects?  
(attributes, methods)

• How can these objects be classified?  
(Class hierarchy)

• What associations are there between the classes?

• Sequence diagram: How do the objects act together?

• State chart: What states are the objects in?

Object-Model: Class Diagram

Every class is represented by a rectangle,
divided into:

• class name

• attributes – preferably with type
information (usually a class name)

• methods – preferably with a signature

Class inheritance is represented by a triangle
(△) connecting subclasses to superclasses.

Example: Accounts

Inherited methods (e.g. open(), deposit()) are not listed separately in subclasses.

Definitions in a subclass override those of the superclass (e.g. may_withdraw())

+open()
+deposit()
+withdraw()
+may_withdraw()

-balance: double
-minimum_balance: double
-owner: string

Account

+set_overdraft_limit()
+may_withdraw()
+print_account_statement()

-overdraft_limit: double
Checking_Account

+set_interest_rate()
+may_withdraw()

-interest_rate: double
-amortization_amount: double

Loan_Account

Abstract Classes and Methods

Abstract classes cannot exist as concrete
objects(instances).

Usually they have one or multiple abstract
methods which are implemented only in
subclasses.

Concrete classes, on the other hand, can exist
as concrete objects.

Example: Abstract Classes
"Digital playback device" is an abstract concept of its

concrete implementations – e.g. CD-player or MP3-player.

Italicized class/method name indicates abstract class/method.

+playback()
+stop()
+forward()
+reverse()
+next()
+previous()
+preview_all()

-output_power: int
-noise_level: int

Digital_Playback_Device

+playback()
+stop()
+forward()
+reverse()
+next()
+previous()

CD_Player

+playback()
+stop()
+forward()
+reverse()
+next()
+previous()

MP3_Player

Default Values and Constraints

The attributes of an object can be provided
with default values.

These will be used by default if nothing is
specified upon construction.

Also, constraints can be used to specify
requirements on attributes.

This allows us to express invariants: object
properties that always hold.

Example: Constraints
These constraints ensure that circles always have a positive radius,

and rectangles positive side lengths.

+area(): double
+draw()
+set_position(position:Point)
+get_position(): Point

-position: Point = (10, 10)
Shape

+area(): double
+draw()
+set_radius(radius:double)
+get_radius(): double

-radius: double = 1 {radius > 0}
Circle

+area(): double
+draw()
+set_a(length:double)
+set_b(length:double)
get_a():double
get_b(): double

-a: double = 10 {a > 0}
-b: double = 10 {b > 0}

Rectangle

default value

constraints

Object-Model: Associations

General associations

• Connections between non related classes
represent associations(relations) between
those classes.

• These describe the semantic connection
between objects (cf. database theory).

• The number of associated objects is
restricted by means of multiplicity.

Example: Multiplicity

A computer vendor has multiple customers, a delivery agency also has
multiple customers, but the computer vendor has only one delivery
agency.

-name: string
-address: string

Computer_Vendor

-name: string
-address: string

Customer

-name: string
-address: string

Deliverer

0..*

0..*

0..*1

1 1

is customer of ➧

is customer of ➧ is deliverer of⬆

Example: Multiplicity (2)

Professors have multiple students, and students have multiple professors.

-name: string
Professor

-name: string
Student0..*

0..*
⬅ attends lecture

Example: Relationships between
Objects

Underlined names indicate concrete objects(instances), which have
concrete values for their attributes.

⬅ attends lecturep1: Professor

name = "Phillip"

p2: Professor

name = "Andreas"

s1: Student

name = "Georg"

s2: Student

name = "Gerda"

s3: Student

name = "Gustav"

s4: Student

name = "Grete"

⬅ attends lecture

⬅ attends lecture

⬅ attends lecture

Aggregation

The has-relation is a very common
association as it describes the hierarchy
between a whole and parts of it.

It is marked with the symbol ♢

Example: A car has 3–4 wheels.

Car

Wheel

has ➧
1

3..4

A Car

A Car

Aggregation (2)

Another example: An enterprise has 1..*
departments with 1..* employees each.

Enterprise

Department

consists of ➧
1

1..*

Employee

has ➧
1

1..*

Aggregation (3)

It is possible for an aggregate to be empty
(usually at the beginning): the multiplicity 0 is
allowed. However, its purpose is to collect
parts.

The aggregate as a whole is representative of
its parts, i.e. it takes on tasks that will then be
propagated to the individual components.

e.g. The method computeRevenue() in an
Enterprise class sums up the revenues of all
the departments.

Composition

A special case of the aggregation, the
composition, is marked with ♦

An aggregation is a composition when the
part cannot exist without the aggregate.

Example: Bill Item

A bill item always
belongs to a bill.

Bill

Item

has ➧
1

1..*

Example: Book

A book consists of a table of contents, multiple
chapters, an index;  
a chapter, in turn, consists of multiple
paragraphs, and so on.

Book

has ➧

1

Table_Of_Contents

Chapter

Index

Paragraph Sentence

1 1

1

1

1

0..*0..*

0..*

0..*
has ➧

has ➧

has ➧ has ➧

Example: Squircle

A "squircle" consists of a circle on
top of a square:

Example: Squircle (2)
A squircle can be modeled as a Squircle class that contains a circle as well as a
square:

+area(): double
+draw()
+set_position(position: Point)
+get_position(): Point

-position: Point = (10, 10)
Shape

+set_a()
+resize(factor:double)

{2 * k.radius = r.a = r.b}
Squircle

+area(): double
+draw()
+set_radius(radius:double)
+get_radius(): double

-radius: double = 1 {radius > 0}
Circle

+area(): double
+draw()
+set_a(length:double)
+set_b(length:double)
+get_a(): double
+get_b(): double

-a: double = 10 {a > 0}
-b: double = 10 {b > 0}

Rectangle

Addenda

A component can only be part of one
aggregate.

A class can also be viewed as a composition
of all its attributes.

In many programming languages aggregations
are implemented by using references
(pointers to objects); however, compositions
are values.

Sequence Diagrams

A sequence diagram reflects the flow of
information between individual objects with an
emphasis on chronological order.

Objects are depicted as vertical lifelines; the time
progresses from top to bottom.

The activation boxes(drawn on top of lifelines)
indicate active objects.

Arrows ("Messages") represent the flow of
information – e.g. method calls (solid arrows) and
return (dashed arrows).

Example: Resizing a Squircle

s: Squircle r: Rectangle c: Circle

User

resize(factor)

get_a()

a

set_radius(a' / 2)

set_a(a')

set_a(a')

set_b(a')

new a:
a' = a * factor

State Charts

A state chart displays

• a sequence of states that an object can
occupy in its lifetime, and

• which events can cause a change of state.

A state chart represents a finite state machine.

State Transitions

State transitions are written as

event name [condition] / action

where

• event name is the name of an event
(usually a method call)

• condition is the condition on which the
transition occurs (optional)

• action is the action taken when the
transition occurs (optional).

State Actions

States can also be annotated with actions:
The entry event denotes the reaching of a
state; the exit event describes the leaving of a
state.

Example: Booking a Flight

When a flight is first created, nothing is booked yet.

The action reset() causes the number of free and reserved seats to be
reset.

Not reserved
entry / reset() partially booked

fully bookedclosed

reserve()

cancel()
[bookedSeats == 1]

close()

cancel_flight()create_flight()

close()

cancel() reserve()
[availableSeats == 1]

cancel()
[bookedSeats > 1]

reserve()
[availableSeats > 1]

Example: ADAC

Devising Classes and Methods

"How do I come up with the objects?" is the
most difficult question of the analysis.

There is no one single answer: it is possible
to model any problem in multiple object-
oriented ways.

Leveraging Use Cases

1. Describe typical scenarios by
means of use cases

2. Extract central classes and
services from the use cases

Use Cases

• Describe how an actor can reach his goal

• What actors are there, and what goals do they
have?

Definitions

• An actor is something, that can exhibit behavior (e.g.
person, system, organization)

• A scenario is a sequence of actions and interactions
between actors

• A Use Case is a collection of related scenarios
consisting of successful scenario and alternative scenarios

Example: Shipping of a PC

A student called Fritz orders a PC at the
WorldOfPC company via a letter. After
some time the PC is delivered to him in a
package by the ShippingDeliverer shipping
company.

• Who are the actors?

• What goals do they have?

• What can go wrong?

Example: Shipping of a PC

A student called Fritz orders a PC at the WorldOfPC company via a
letter. After some time the PC is delivered to him in a package by the
ShippingDeliverer shipping company.

Alternative scenarios:

• Order does not arrive
– cannot be served –

• Computer (not yet) available
– contact customer; possibly cancel; –

• Package cannot be delivered
– contact customer; possibly cancel; –

Use Cases in UML
combine scenarios

PC Delivery

Order a PC Lost
Delivery

Delayed
Delivery

Lost
Delivery

Fritz WorldOfPC

Design by Responsibility

Design by responsibility is a common
technique:

Each object is responsible for certain tasks
and it is either capable of performing them
its own, or it has to cooperate with other
objects to do so.

The goal is to devise objects according to their
roles in a collaboration.

Design by Responsibility

Begin with an informal description of the task,
and examine its key phrases:

Nouns will become classes and concrete objects.

Verbs will become services –

• either services provided by an object,

• or calls to services of cooperating objects.

The services determine the responsibilities and
collaborations of each class.

Design by Responsibility

The classes that were found this way are then
notated onto CRC-Cards

(class – responsibilities – collaboration):

The CRC-Card represents the role of an
object in the global system.

class name collaboration with

responsible for

A First Approximation

ordering
receiving packages

Student collaboration with

responsible for

ComputerVendor collaboration with

responsible for

Deliverer collaboration with

responsible for

accepting orders
sending pakages

receiving packages
sending packages

computer vendor
deliverer

student
deliverer

computer vendor
student

Refinement

The first approximation, however, is not yet complete:

• Fritz acts in his role as customer; it is not important
that he is a student (unless he would get a student's
discount). The class name Customer is better suited
than Student.

• Letter and package are missing – these are pure data
objects that have neither responsibilities nor
collaborations.

• We have left out the way the letter gets to the
computer vendor; possibly there is another delivery
company involved.

• The flow of information, state transitions and class
hierarchies are not taken into account.

Refinement

• We have left out the way the letter gets
to the computer vendor; possibly there is
another delivery company involved.

• The flow of information, state transitions
and class hierarchies are not taken into
account.

Revising a Design

The first draft can usually be significantly improved:

• Identifying common features

• Generalizing behavior

• Splitting classes into subsystems

• Minimizing relations

• Using libraries

• Genericity and design patterns

Common Features

Is it possible to connect common features
(attributes, methods) of different classes?

These commonalities

• can be relocated into an aggregate class.
The existing classes still have to offer the
transferred services.

• can be moved into a common superclass.
Usually this makes sense with common
is-relationships.

Generalizing Behavior

Is it possible to provide methods with a unified
interface on an abstract level?

Abstract classes can provide general
methods, the details of which are
implemented in the concrete subclasses.

Splitting Classes into Subsystems

Is it possible to split up classes with many
features?

Consider introducing a subsystem
consisting of multiple objects and
affiliated classes.

Minimizing Object Relations

Is it possible to reduce the number of "uses"-
relationships by regrouping classes or interfaces?

Only the newly created subsystem has to
manage external relations.

Reuse and Libraries

Is it possible to reuse existing classes?

Possibly adapter classes are needed.

Genericity

Is it possible to use generic classes and
methods?

Or maybe: is it possible to design the
classes and methods in a generic way?

Design Patterns

Is it possible to use standard patterns of
architectural design?

(more next lecture)

Object-Model: Shipping of a PC

-name: string
-address: string

Address Package

Order

+receive(p:Package)
+send(o:Order)

Customer

+accept(o:Order)

ComputerVendor

+receive(p: Package)
-name: string

Deliverer

0..* 0..*

1 1

⬅ receiver
⬅ sender

⬅ buyer

Sequence Diagram: Shipping of a PC
c: Customer p: ComputerVendor d: Deliverer

accept()

send() receive()

receive()

receive()

Depicts only the successful case
Failures have to be described separately

State Chart
with some few failures

start end

Ordered Sent Received Paid

accept()

send() receive() pay()

not_deliverable() not_received() not_paid()

A Word about CRC

“One purpose of CRC cards is to fail early, to fail
often, and to fail inexpensively. It is a lot cheaper to
tear up a bunch of cards than it would be to
reorganize a large amount of source code.” (C. Horstmann)

PaperwarePaperware

From Model to Program

How does one transform a design into code?

• Classes and hierarchies can be taken directly
from the class diagram.

• For each method a complete signature has
to be provided.

From Model to Program

• Associations between classes are
implemented using attributes.

– n:1 and 1:1 associations from P to Q
are implemented as an attribute q of type
Q in P.

– 1:n and n:m associations from P to Q
are implemented as a set qs of type
set(Q). (e.g. array, list...)

From Model to Program

• Methods belonging to associations have to
be implemented in extra (helper) classes.

• For each class an invariant has to be
formulated and documented; for each
method a pre- and postcondition.

• The method bodies have to be
implemented using techniques from
traditional programming.

From Model to Program

• Verification of the state chart: are the only
legal call sequences exactly those
documented in the dynamic model? 
Illegal calls have to be intercepted using
exceptions/errors! For that it is often useful
to dynamically check the precondition.

• Testing is done using conventional methods.

Model-Driven Engineering

Modern programming environments
automatically create code templates from a
model:

1. You design a system with all its classes
and attributes.

2. The programming environment creates
the corresponding code templates.

3. Now you "only" have to add
implementations in the method bodies.

Case Study: Spreadsheet

The VisiCalc spreadsheet program – the first “killer app”

Case Study: Spreadsheet

A spreadsheet consists of m x n cells.

Cells are either empty or they have content.

Contents can be numbers, texts, or formulas.

There are multiple formulas for a content
(that reference the content)

There are multiple contents for a formula
(that serve as operands)

Object Model

+get_value(): Content
+enter_data(s: string)

Cell

+enter_data(s:string)
-value: double

Number

+enter_data(s:string)
-value: string

Text

+get_value(): Content
+enter_data(s: string)
-refresh()

Formula

Spreadsheet

+get_value(): Content
+enter_data(s: string)
-notify()

Content

1

1

1

1 1

0..1

0..*

0..*

has ➧

cell

content

operand

formula

result

Relationships between Objects
⬅operanda1: Number

value = 1

a2: Number

value = 10

b1: Formula

b1 = a1 + a2

b1': Number

value = 11

b2: Formula

b2 = b1 + a3

b2': Number

value = 111

a3: Number

value = 100

⬅ operand operand ➡

operand ➡

result ➡

result ➡1 11

10 111

100

A B

1

2

3

State Chart

The method enter_data() of the Content class examines whether the
actual value has changed. If so, every Formula that has this Content as an
operand is notified by means of the method notify().

constant value

changed value

enter_data() notify()[new value =
old value]

Sequence Diagram

Example: Let the spreadsheet be filled out as just described; now the
value of cell A1 is changed from 1 to 5.

User

a1: Number

value = 1

a2: Number

value = 10

a3: Number

value = 100

b1: Formula

b1 = a1 + a2

b1': Number

value = 11

b2: Formula

b2 = b1 + a3

b2': Number

value = 111

enter_data("5") refresh()

get_value()

5

get_value()

10
enter_data("15")

refresh()

get_value()

15

enter_data("115")

get_value()

100

Handouts

Object Model

+get_value(): Content
+enter_data(s: string)

Cell

+enter_data(s:string)
-value: double

Number

+enter_data(s:string)
-value: string

Text

+get_value(): Content
+enter_data(s: string)
-refresh()

Formula

Spreadsheet

+get_value(): Content
+enter_data(s: string)
-notify()

Content

1

1

1

1 1

0..1

0..*

0..*

has ➧

cell

content

operand

formula

result

Relationships between Objects
⬅operanda1: Number

value = 1

a2: Number

value = 10

b1: Formula

b1 = a1 + a2

b1': Number

value = 11

b2: Formula

b2 = b1 + a3

b2': Number

value = 111

a3: Number

value = 100

⬅ operand operand ➡

operand ➡

result ➡

result ➡1 11

10 111

100

A B

1

2

3

State Chart

The method enter_data() of the Content class examines whether the
actual value has changed. If so, every Formula that has this Content as an
operand is notified by means of the method notify().

constant value

changed value

enter_data() notify()[new value =
old value]

Sequence Diagram

Example: Let the spreadsheet be filled out as just described; now the
value of cell A1 is changed from 1 to 5.

User

a1: Number

value = 1

a2: Number

value = 10

a3: Number

value = 100

b1: Formula

b1 = a1 + a2

b1': Number

value = 11

b2: Formula

b2 = b1 + a3

b2': Number

value = 111

enter_data("5") refresh()

get_value()

5

get_value()

10
enter_data("15")

refresh()

get_value()

15

enter_data("115")

get_value()

100

